yuanpeng revised this gist . Go to revision
1 file changed, 1010 insertions
texture_proc_real_1step_not_aligned_2step_aligned.py(file created)
@@ -0,0 +1,1010 @@ | |||
1 | + | import json | |
2 | + | import numpy as np | |
3 | + | import os | |
4 | + | import scipy | |
5 | + | from scipy.optimize import minimize | |
6 | + | from scipy.optimize import curve_fit | |
7 | + | from scipy.signal import argrelextrema | |
8 | + | from pystog import Pre_Proc | |
9 | + | import matplotlib.pyplot as plt | |
10 | + | import random | |
11 | + | ||
12 | + | rebin = Pre_Proc.rebin | |
13 | + | ||
14 | + | # ================ | |
15 | + | # Input parameters | |
16 | + | # vvvvvvvvvvvvvvvv | |
17 | + | ||
18 | + | # ---------- | |
19 | + | # Some flags | |
20 | + | # ---------- | |
21 | + | testing = False # flag for testing | |
22 | + | ||
23 | + | # ------------------------------------------------------------------ | |
24 | + | # Directory and config files definition | |
25 | + | # | |
26 | + | # run_dir => directory for storing the reduced data files | |
27 | + | # according to the the two theta and azimuthal | |
28 | + | # angle bins. | |
29 | + | # out_dir => directory for storing the outputs. | |
30 | + | # det_map_file => detector group information for all the two | |
31 | + | # theta and azimuthal bins. | |
32 | + | # ttheta_group_file => config file defining groups for second stage | |
33 | + | # processing. | |
34 | + | # ------------------------------------------------------------------ | |
35 | + | run_dir = os.path.join( | |
36 | + | ".", | |
37 | + | "texture_proc" | |
38 | + | ) | |
39 | + | out_dir = os.path.join( | |
40 | + | run_dir, | |
41 | + | "texture_proc_output" | |
42 | + | ) | |
43 | + | det_map_file = os.path.join( | |
44 | + | "/SNS/NOM/shared/scripts/texture", | |
45 | + | "nom_texture_pointer.json" | |
46 | + | ) | |
47 | + | ttheta_group_file = os.path.join( | |
48 | + | ".", | |
49 | + | "ttheta_group_params_new_new_new.json" | |
50 | + | ) | |
51 | + | ||
52 | + | # --------------------- | |
53 | + | # Processing parameters | |
54 | + | # --------------------- | |
55 | + | stem_name = "NOM_Si_640e_" | |
56 | + | ttheta_binw = 5. # in degrees | |
57 | + | azm_binw = 10. # in degrees | |
58 | + | header_num = 2 | |
59 | + | sph_l_max = 1 # for first stage | |
60 | + | tt_sph_l_max = 2 # for second stage | |
61 | + | amp_thresh = .9 # Threshold for peak intensity -- in a certain two theta | |
62 | + | # bins, all patterns with the fitted peak intensity | |
63 | + | # different from the median intensity by more than this | |
64 | + | # percentage threshold will be discarded. | |
65 | + | ||
66 | + | # ^^^^^^^^^^^^^^^^ | |
67 | + | # Input parameters | |
68 | + | # ================ | |
69 | + | ||
70 | + | if testing: | |
71 | + | print("\n!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") | |
72 | + | print("[Warning] Testing mode is on.") | |
73 | + | print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n") | |
74 | + | ||
75 | + | ||
76 | + | def gaussian(x, a, b, c): | |
77 | + | """Gaussian function. | |
78 | + | Parameters | |
79 | + | ---------- | |
80 | + | x : ndarray Independent variable. | |
81 | + | a : float Amplitude. | |
82 | + | b : float Center. | |
83 | + | c : flaot Width. | |
84 | + | ||
85 | + | Returns | |
86 | + | ------- | |
87 | + | float Gaussian function value. | |
88 | + | """ | |
89 | + | return a * np.exp(-(x - b)**2 / (2 * c**2)) | |
90 | + | ||
91 | + | ||
92 | + | def bkg_expo(x, a, b, c): | |
93 | + | """Background exponential function. | |
94 | + | Parameters | |
95 | + | ---------- | |
96 | + | x : ndarray Independent variable. | |
97 | + | a : float offset. | |
98 | + | b : float coefficient. | |
99 | + | c : flaot exponent. | |
100 | + | ||
101 | + | Returns | |
102 | + | ------- | |
103 | + | float Exponential background value. | |
104 | + | """ | |
105 | + | return a - b * np.exp(-c * x**2.) | |
106 | + | ||
107 | + | ||
108 | + | def sph_harm_real(m, l, theta, phi): | |
109 | + | """Real spherical harmonics. Refer to the Wikipedia, | |
110 | + | https://en.wikipedia.org/wiki/Table_of_spherical_harmonics | |
111 | + | We could follow the standard definition of the spherical harmonics to | |
112 | + | define the function here, but for the purpose of this script, we only | |
113 | + | need the first few terms so we just implemented the function directly. | |
114 | + | ||
115 | + | Parameters | |
116 | + | ---------- | |
117 | + | m : order of spherical harmonics | |
118 | + | l : degree of spherical harmonics | |
119 | + | theta : polar angle in radian | |
120 | + | phi : azimuthal angle in radian | |
121 | + | ||
122 | + | Returns | |
123 | + | ------- | |
124 | + | float Spherical harmonics real value | |
125 | + | """ | |
126 | + | if l == 0 and m == 0: | |
127 | + | return np.sqrt(1. / (4. * np.pi)) | |
128 | + | if l == 1 and m == -1: | |
129 | + | return np.sqrt(3. / (4. * np.pi)) * np.sin(phi) * np.sin(theta) | |
130 | + | if l == 1 and m == 0: | |
131 | + | return np.sqrt(3. / (4. * np.pi)) * np.cos(theta) | |
132 | + | if l == 1 and m == 1: | |
133 | + | return np.sqrt(3. / (4. * np.pi)) * np.cos(phi) * np.sin(theta) | |
134 | + | if l == 2 and m == -2: | |
135 | + | part = np.sin(phi) * np.cos(phi) * (np.sin(theta))**2. | |
136 | + | return np.sqrt(15. / (4. * np.pi)) * part | |
137 | + | if l == 2 and m == -1: | |
138 | + | part = np.sin(phi) * np.sin(theta) * np.cos(theta) | |
139 | + | return np.sqrt(15. / (4. * np.pi)) * part | |
140 | + | if l == 2 and m == 0: | |
141 | + | part = 3. * (np.cos(theta))**2. - 1. | |
142 | + | return np.sqrt(5. / (16. * np.pi)) * part | |
143 | + | if l == 2 and m == 1: | |
144 | + | part = np.cos(phi) * np.sin(theta) * np.cos(theta) | |
145 | + | return np.sqrt(15. / (4. * np.pi)) * part | |
146 | + | if l == 2 and m == 2: | |
147 | + | part = ((np.cos(phi))**2. - (np.sin(phi))**2.) * (np.sin(theta))**2. | |
148 | + | return np.sqrt(15. / (16. * np.pi)) * part | |
149 | + | ||
150 | + | ||
151 | + | def target_function(params, sph_mat, txt_int): | |
152 | + | """Target function for the optimization of the spherical harmonic | |
153 | + | coefficients. | |
154 | + | ||
155 | + | Parameters | |
156 | + | ---------- | |
157 | + | params : ndarray Spherical harmonic coefficients. | |
158 | + | sph_mat : ndarray Spherical harmonic matrix. | |
159 | + | txt_int : ndarray Textured S(Q) intensity. | |
160 | + | ||
161 | + | Returns | |
162 | + | ------- | |
163 | + | float : Norm of the residuals. | |
164 | + | """ | |
165 | + | result = sph_mat @ params | |
166 | + | residuals = result - txt_int | |
167 | + | ||
168 | + | return np.linalg.norm(residuals) | |
169 | + | ||
170 | + | ||
171 | + | if not os.path.exists(out_dir): | |
172 | + | os.makedirs(out_dir) | |
173 | + | ||
174 | + | # ================ | |
175 | + | # Read in Q values | |
176 | + | # ================ | |
177 | + | print("[Info] Read in Q values...") | |
178 | + | bank = 1 | |
179 | + | while True: | |
180 | + | tr_file = os.path.join( | |
181 | + | run_dir, | |
182 | + | stem_name + f"bank{bank}.dat" | |
183 | + | ) | |
184 | + | if os.path.exists(tr_file): | |
185 | + | data = np.loadtxt(tr_file, skiprows=header_num, dtype=float) | |
186 | + | q_vals = data[:, 0] | |
187 | + | break | |
188 | + | else: | |
189 | + | bank += 1 | |
190 | + | ||
191 | + | # =================== | |
192 | + | # Read in S(Q) values | |
193 | + | # =================== | |
194 | + | print("[Info] Read in all S(Q)'s...") | |
195 | + | num_groups = int(180. / ttheta_binw) * int(360. / azm_binw) | |
196 | + | all_sofq = dict() | |
197 | + | for i in range(num_groups): | |
198 | + | group_tmp = i + 1 | |
199 | + | tr_file = os.path.join( | |
200 | + | run_dir, | |
201 | + | stem_name + "bank%d.dat" % group_tmp | |
202 | + | ) | |
203 | + | if os.path.exists(tr_file): | |
204 | + | data = np.loadtxt(tr_file, skiprows=header_num, dtype=float) | |
205 | + | sofq_tmp = data[:, 1] | |
206 | + | all_sofq[group_tmp] = sofq_tmp | |
207 | + | ||
208 | + | # =========================================================================== | |
209 | + | # Read in the detector map, telling the center two theta and azimuthal angle, | |
210 | + | # and the ID for each group of detectors. | |
211 | + | # =========================================================================== | |
212 | + | det_pointer = json.load(open(det_map_file, "r")) | |
213 | + | ||
214 | + | # ============================================================================= | |
215 | + | # Determine the valid azimuthal bins for each two theta bin. Here follows are | |
216 | + | # the criteria: | |
217 | + | # 1. The 2theta bin is in use | |
218 | + | # 2. The peak fitting succeeded | |
219 | + | # 3. The fitted peak intensity is close to the median intensity | |
220 | + | # ============================================================================= | |
221 | + | with open(ttheta_group_file, "r") as f: | |
222 | + | ttheta_groups = json.load(f) | |
223 | + | ||
224 | + | print( | |
225 | + | "[Info] Pre-processing the data for all " | |
226 | + | "the two theta and azimuthal bins..." | |
227 | + | ) | |
228 | + | ttheta_bins = np.arange(0, 181, ttheta_binw) | |
229 | + | for i in range(len(ttheta_bins) - 1): | |
230 | + | ttheta_cv = (ttheta_bins[i] + ttheta_bins[i + 1]) / 2. | |
231 | + | ttheta_cvk = "{:d}".format(int(np.floor(ttheta_cv))) | |
232 | + | if ttheta_cvk in det_pointer: | |
233 | + | ttheta_valid = False | |
234 | + | for tkey, item in ttheta_groups.items(): | |
235 | + | if ttheta_cvk in item["QRange"].keys(): | |
236 | + | ttheta_valid = True | |
237 | + | ttheta_group = tkey | |
238 | + | break | |
239 | + | ||
240 | + | # A valid two theta value means it belongs to one of the defined | |
241 | + | # groups in the `ttheta_group_file` file. | |
242 | + | if ttheta_valid: | |
243 | + | pa_lb = ttheta_groups[ttheta_group]["PAParams"]["LeftBound"] | |
244 | + | pa_rb = ttheta_groups[ttheta_group]["PAParams"]["RightBound"] | |
245 | + | mask = (q_vals >= pa_lb) & (q_vals <= pa_rb) | |
246 | + | q_vals_fit = q_vals[mask] | |
247 | + | ||
248 | + | b0 = (pa_lb + pa_rb) / 2. | |
249 | + | c0 = 1. | |
250 | + | ||
251 | + | amp_tmp = dict() | |
252 | + | center_tmp = dict() | |
253 | + | ||
254 | + | for key, item in det_pointer[ttheta_cvk]["AZMDict"].items(): | |
255 | + | # Check whether the data exist for each azimuthal bin. If not, | |
256 | + | # we just discard the bin. | |
257 | + | if int(item["GroupID"]) in all_sofq.keys(): | |
258 | + | sofq_fit = all_sofq[int(item["GroupID"])][mask] | |
259 | + | a0 = np.max(sofq_fit) | |
260 | + | p_init = [a0, b0, c0] | |
261 | + | try: | |
262 | + | popt, _ = curve_fit( | |
263 | + | gaussian, | |
264 | + | q_vals_fit, | |
265 | + | sofq_fit, | |
266 | + | p0=p_init | |
267 | + | ) | |
268 | + | amp_tmp[key] = popt[0] | |
269 | + | center_tmp[key] = popt[1] | |
270 | + | except RuntimeError: | |
271 | + | # We want to handle the peak fitting failure. For | |
272 | + | # testing mode, we just set the amplitude to 1 and the | |
273 | + | # center to 0. For real data, we just discard the data. | |
274 | + | if testing: | |
275 | + | amp_tmp[key] = 1. | |
276 | + | center_tmp[key] = 0. | |
277 | + | else: | |
278 | + | det_pointer[ttheta_cvk][ | |
279 | + | "AZMDict" | |
280 | + | ][key]["Use"] = False | |
281 | + | det_pointer[ttheta_cvk][ | |
282 | + | "AZMDict" | |
283 | + | ][key]["Offset"] = 0. | |
284 | + | else: | |
285 | + | det_pointer[ttheta_cvk][ | |
286 | + | "AZMDict" | |
287 | + | ][key]["Use"] = False | |
288 | + | det_pointer[ttheta_cvk][ | |
289 | + | "AZMDict" | |
290 | + | ][key]["Offset"] = 0. | |
291 | + | ||
292 | + | if (len(center_tmp) > 0): | |
293 | + | # center_ref = next(iter(center_tmp.items()))[1] # first item | |
294 | + | center_ref = 5.06 | |
295 | + | ||
296 | + | # Here we check the peak intensity. If the intensity is too | |
297 | + | # far from the median intensity, we discard the data. If not, | |
298 | + | # we calculate the offset for each azimuthal bin, relative to | |
299 | + | # the center of the first azimuthal bin, within the same two | |
300 | + | # theta bin. | |
301 | + | median_amp = np.median(list(amp_tmp.values())) | |
302 | + | used_keys = list() | |
303 | + | for key, item in amp_tmp.items(): | |
304 | + | if abs((item - median_amp) / median_amp) < amp_thresh: | |
305 | + | used_keys.append(key) | |
306 | + | for key in det_pointer[ttheta_cvk]["AZMDict"].keys(): | |
307 | + | if key in used_keys: | |
308 | + | det_pointer[ttheta_cvk]["AZMDict"][key]["Use"] = True | |
309 | + | offset = center_ref - center_tmp[key] | |
310 | + | det_pointer[ttheta_cvk][ | |
311 | + | "AZMDict" | |
312 | + | ][key]["Offset"] = offset | |
313 | + | else: | |
314 | + | det_pointer[ttheta_cvk][ | |
315 | + | "AZMDict" | |
316 | + | ][key]["Use"] = False | |
317 | + | det_pointer[ttheta_cvk][ | |
318 | + | "AZMDict" | |
319 | + | ][key]["Offset"] = 0. | |
320 | + | else: | |
321 | + | # If none of the detector groups in the two theta bin is | |
322 | + | # valid (either file not existing, or fitting failed), | |
323 | + | # we mask out the whole two theta bin. | |
324 | + | for key in det_pointer[ttheta_cvk]["AZMDict"].keys(): | |
325 | + | det_pointer[ttheta_cvk]["AZMDict"][key]["Use"] = False | |
326 | + | det_pointer[ttheta_cvk]["AZMDict"][key]["Offset"] = 0. | |
327 | + | else: | |
328 | + | # If the two theta bin is invalid, we just discard the bin. | |
329 | + | # By 'invalid' two theta bin, we mean that the two theta value | |
330 | + | # is not included in the `ttheta_group_file`. | |
331 | + | for key in det_pointer[ttheta_cvk]["AZMDict"].keys(): | |
332 | + | det_pointer[ttheta_cvk]["AZMDict"][key]["Use"] = False | |
333 | + | det_pointer[ttheta_cvk]["AZMDict"][key]["Offset"] = 0. | |
334 | + | ||
335 | + | # ============================================================================= | |
336 | + | # Loop over the two theta bins and optimize the spherical harmonic coefficients | |
337 | + | # ============================================================================= | |
338 | + | print("[Info] Working on the isotropic correction for each two theta bin...") | |
339 | + | ttheta_bins = np.arange(0, 181, ttheta_binw) | |
340 | + | total_items = len(ttheta_bins) | |
341 | + | sofq_corrected_first = list() | |
342 | + | ttheta_valid = list() | |
343 | + | print("[Info] Processing 2Theta array (0, 180)...") | |
344 | + | for i in range(len(ttheta_bins) - 1): | |
345 | + | ttheta_cv = (ttheta_bins[i] + ttheta_bins[i + 1]) / 2. | |
346 | + | ttheta_cvk = "{:d}".format(int(np.floor(ttheta_cv))) | |
347 | + | print(f"[Info] Processing 2Theta: {ttheta_cvk}...") | |
348 | + | if ttheta_cvk in det_pointer: | |
349 | + | sofq_corrected = list() | |
350 | + | s_coefficients = list() | |
351 | + | valid_group_found = True | |
352 | + | for j in range(len(q_vals)): | |
353 | + | sofq_phi = list() | |
354 | + | sph_matrix = list() | |
355 | + | for _, item in det_pointer[ttheta_cvk]["AZMDict"].items(): | |
356 | + | # According to the `Use` flag created for each azimuthal bin | |
357 | + | # in previous step, we are going to check whether there | |
358 | + | # exist valid azimuthal bins in a two theta bin. | |
359 | + | # NOTE: We may need to add in further check for whether the | |
360 | + | # number of valid azimuthal bins is greater than the number | |
361 | + | # of parameters to fit. | |
362 | + | if int(item["GroupID"]) in all_sofq.keys() and item["Use"]: | |
363 | + | azm_v = item["CentrAMZ"] | |
364 | + | sph_row = list() | |
365 | + | for l in range(sph_l_max + 1): | |
366 | + | for m in range(-l, l + 1): | |
367 | + | if l > 0 and m == 0: | |
368 | + | continue | |
369 | + | sph_row.append( | |
370 | + | sph_harm_real( | |
371 | + | m, | |
372 | + | l, | |
373 | + | ttheta_cv * np.pi / 180., | |
374 | + | azm_v * np.pi / 180. | |
375 | + | ) | |
376 | + | ) | |
377 | + | sph_matrix.append(sph_row) | |
378 | + | sofq_phi.append(all_sofq[int(item["GroupID"])][j]) | |
379 | + | else: | |
380 | + | pass | |
381 | + | ||
382 | + | sph_matrix = np.array(sph_matrix) | |
383 | + | sofq_phi = np.array(sofq_phi) | |
384 | + | ||
385 | + | if len(sph_matrix) == 0 or len(sofq_phi) == 0: | |
386 | + | valid_group_found = False | |
387 | + | break | |
388 | + | ||
389 | + | num_terms = (sph_l_max + 1)**2 - sph_l_max | |
390 | + | params = np.array( | |
391 | + | [1 for _ in range(num_terms)] | |
392 | + | ) | |
393 | + | ||
394 | + | result = minimize( | |
395 | + | target_function, | |
396 | + | params, | |
397 | + | args=(sph_matrix, sofq_phi), | |
398 | + | method='SLSQP' | |
399 | + | ) | |
400 | + | ||
401 | + | optimal_params = result.x | |
402 | + | ||
403 | + | # Calculate the S(Q) corrected, taking into account only the | |
404 | + | # isotropic term. | |
405 | + | y00 = sph_harm_real(0, 0, 0, 0) | |
406 | + | s00 = optimal_params[0] | |
407 | + | sofq_corrected.append(y00 * s00) | |
408 | + | ||
409 | + | s_coefficients.append(optimal_params) | |
410 | + | ||
411 | + | # Output the corrected S(Q) values and the coefficients for | |
412 | + | # each two theta bin. | |
413 | + | # For a certain two theta bin, if no valid azimuthal bin | |
414 | + | # found for any Q value, the `valid_group_found` would be | |
415 | + | # False and thus the corresponding two theta bin will be | |
416 | + | # marked as invalid, i.e., not included in the valid two | |
417 | + | # theta bin list `ttheta_valid`. | |
418 | + | if valid_group_found: | |
419 | + | # The valid two theta bin array and the isotropic | |
420 | + | # corrected S(Q) array are synchronized, i.e., they | |
421 | + | # share the same index, making it convenient for next | |
422 | + | # step implementation. | |
423 | + | sofq_corrected_first.append(sofq_corrected) | |
424 | + | ttheta_valid.append(ttheta_cv) | |
425 | + | with open( | |
426 | + | os.path.join( | |
427 | + | out_dir, | |
428 | + | f"{stem_name}2theta_{ttheta_cvk}.dat" | |
429 | + | ), | |
430 | + | "w" | |
431 | + | ) as f: | |
432 | + | f.write(f"{len(q_vals)}\n") | |
433 | + | f.write("\n") | |
434 | + | for j in range(len(q_vals)): | |
435 | + | f.write( | |
436 | + | f"{q_vals[j]:.4f} {sofq_corrected[j]:.4f}\n" | |
437 | + | ) | |
438 | + | ||
439 | + | with open( | |
440 | + | os.path.join( | |
441 | + | out_dir, | |
442 | + | f"{stem_name}2theta_{ttheta_cvk}_coeffs.dat" | |
443 | + | ), | |
444 | + | "w" | |
445 | + | ) as f: | |
446 | + | for j in range(len(q_vals)): | |
447 | + | f.write(f"{q_vals[j]:.4f} ") | |
448 | + | for k in range(len(s_coefficients[j])): | |
449 | + | f.write( | |
450 | + | f"{s_coefficients[j][k]:.4f} " | |
451 | + | ) | |
452 | + | f.write("\n") | |
453 | + | ||
454 | + | ttheta_valid = np.array(ttheta_valid) | |
455 | + | sofq_corrected_first = np.array(sofq_corrected_first) | |
456 | + | ||
457 | + | # ============================================================================= | |
458 | + | # Pre-process the isotropic corrected S(Q) data corresponding to all the two | |
459 | + | # theta bins. Here is the thing to do: | |
460 | + | # 1. For each two theta bin, grab the data in a certain Q range according to | |
461 | + | # read-in parameters from `ttheta_group_file`. | |
462 | + | # 2. For each two theta bin, fill the data in the low Q range with the data | |
463 | + | # in the same low Q range that comes from the first two theta bin in the | |
464 | + | # same group. | |
465 | + | # ============================================================================= | |
466 | + | print( | |
467 | + | "[Info] Pre-processing (step-1) the isotropic corrected data for the " | |
468 | + | "second stage correction..." | |
469 | + | ) | |
470 | + | ttheta_k_valid = [ | |
471 | + | "{:d}".format(int(np.floor(ttheta))) for ttheta in ttheta_valid | |
472 | + | ] | |
473 | + | for i, ttheta in enumerate(ttheta_valid): | |
474 | + | ttheta_k = ttheta_k_valid[i] | |
475 | + | for key, item in ttheta_groups.items(): | |
476 | + | if ttheta_k in item["QRange"].keys(): | |
477 | + | group = key | |
478 | + | break | |
479 | + | ||
480 | + | qrange_tmp = ttheta_groups[group]["QRange"] | |
481 | + | left_b = qrange_tmp[ttheta_k]["LeftBound"] | |
482 | + | leftmost_b = next(iter(qrange_tmp.items()))[1]["LeftBound"] | |
483 | + | right_b_fill = left_b | |
484 | + | ||
485 | + | # Fill the low Q range with the data from the first two theta bin | |
486 | + | # in the same group. | |
487 | + | ref_key_ig = next(iter(qrange_tmp)) | |
488 | + | ref_key_id = ttheta_k_valid.index(ref_key_ig) | |
489 | + | mask_fill = (q_vals >= leftmost_b) & (q_vals < right_b_fill) | |
490 | + | sofq_corrected_first[i][mask_fill] = sofq_corrected_first[ | |
491 | + | ref_key_id | |
492 | + | ][mask_fill] | |
493 | + | ||
494 | + | # ============================================================================= | |
495 | + | # Process each of the two theta groups separately. Here is the thing to do: | |
496 | + | # 1. For each group, align all the patterns according to the peak fitting. | |
497 | + | # 2. Within each group, we, | |
498 | + | # - for each two theta, figure out and remove the background, using an | |
499 | + | # exponential function | |
500 | + | # - integrate intensities in those pre-defined Q chunks | |
501 | + | # - for each Q chunk, fit against the spherical harmonics across two | |
502 | + | # theta angles, just like what we did with each single Q point when | |
503 | + | # correcting the phi part. | |
504 | + | # - extract the isotropic term for each Q chunk, calculate the ratio | |
505 | + | # of the original integrated intensity over the isotropic intensity | |
506 | + | # for each two theta value. Then rescale each Q chunk for each two | |
507 | + | # theta. | |
508 | + | # - add back the exponential background | |
509 | + | # ============================================================================= | |
510 | + | print( | |
511 | + | "[Info] Pre-processing (step-2) the isotropic corrected data for the " | |
512 | + | "second stage correction..." | |
513 | + | ) | |
514 | + | sofq_bkg_removed = dict() | |
515 | + | bkg_off = np.inf | |
516 | + | ||
517 | + | for tg_key, item in ttheta_groups.items(): | |
518 | + | print(f"[Info] Processing 2Theta group {tg_key}...") | |
519 | + | pa_lb = item["PAParams"]["LeftBound"] | |
520 | + | pa_rb = item["PAParams"]["RightBound"] | |
521 | + | center_tmp = dict() | |
522 | + | for tt_key in item["QRange"].keys(): | |
523 | + | if tt_key not in ttheta_k_valid: | |
524 | + | continue | |
525 | + | tt_index = ttheta_k_valid.index(tt_key) | |
526 | + | sofq_tmp = sofq_corrected_first[tt_index] | |
527 | + | mask = (q_vals >= pa_lb) & (q_vals <= pa_rb) | |
528 | + | q_vals_fit = q_vals[mask] | |
529 | + | sofq_fit = sofq_tmp[mask] | |
530 | + | ||
531 | + | p_init = [np.max(sofq_fit), (pa_lb + pa_rb) / 2., 1.] | |
532 | + | ||
533 | + | if testing: | |
534 | + | center_tmp[tt_key] = 0. | |
535 | + | else: | |
536 | + | try: | |
537 | + | popt, _ = curve_fit( | |
538 | + | gaussian, | |
539 | + | q_vals_fit, | |
540 | + | sofq_fit, | |
541 | + | p0=p_init | |
542 | + | ) | |
543 | + | center_tmp[tt_key] = popt[1] | |
544 | + | except RuntimeError: | |
545 | + | center_tmp[tt_key] = 0. | |
546 | + | ||
547 | + | # center_ref = next(iter(center_tmp.items()))[1] | |
548 | + | center_ref = 5.06 | |
549 | + | for tt_key, c_item in center_tmp.items(): | |
550 | + | # According to the peak fitting failure handling just above, the | |
551 | + | # corresponding peak center would be set to 0. | |
552 | + | if c_item == 0.: | |
553 | + | offset = 0. | |
554 | + | else: | |
555 | + | offset = center_ref - c_item | |
556 | + | ||
557 | + | tt_index = ttheta_k_valid.index(tt_key) | |
558 | + | q_vals_tmp = q_vals + offset | |
559 | + | sofq_tmp = sofq_corrected_first[tt_index].copy() | |
560 | + | q_bin_s = q_vals[1] - q_vals[0] | |
561 | + | if offset < 0: | |
562 | + | while q_vals_tmp[-1] < q_vals[-1]: | |
563 | + | q_vals_tmp = np.append( | |
564 | + | q_vals_tmp, | |
565 | + | q_vals_tmp[-1] + q_bin_s | |
566 | + | ) | |
567 | + | sofq_tmp = np.append( | |
568 | + | sofq_tmp, | |
569 | + | sofq_corrected_first[tt_index][-1] | |
570 | + | ) | |
571 | + | else: | |
572 | + | while q_vals_tmp[0] > q_vals[0]: | |
573 | + | q_vals_tmp = np.insert( | |
574 | + | q_vals_tmp, | |
575 | + | 0, | |
576 | + | q_vals_tmp[0] - q_bin_s | |
577 | + | ) | |
578 | + | sofq_tmp = np.insert( | |
579 | + | sofq_tmp, | |
580 | + | 0, | |
581 | + | sofq_corrected_first[tt_index][0] | |
582 | + | ) | |
583 | + | _, sofq_rebin = rebin( | |
584 | + | q_vals_tmp, | |
585 | + | sofq_tmp, | |
586 | + | q_vals[0], | |
587 | + | q_bin_s, | |
588 | + | q_vals[-1] | |
589 | + | ) | |
590 | + | sofq_corrected_first[tt_index] = sofq_rebin | |
591 | + | ||
592 | + | for tt_key in item["QRange"].keys(): | |
593 | + | if tt_key not in ttheta_k_valid: | |
594 | + | continue | |
595 | + | tt_index = ttheta_k_valid.index(tt_key) | |
596 | + | ttheta = ttheta_valid[tt_index] | |
597 | + | sofq_ttheta = sofq_corrected_first[tt_index] | |
598 | + | ||
599 | + | bkg_lb = item["QRange"][tt_key]["LeftBound"] | |
600 | + | bkg_rb = item["QRange"][tt_key]["RightBound"] | |
601 | + | ||
602 | + | # Here we output the aligned patterns. | |
603 | + | # N.B. The alignment only happens internally in each of the defined | |
604 | + | # groups. Therefore, a final stage alignment may still be needed to | |
605 | + | # align the patterns after all steps. | |
606 | + | with open( | |
607 | + | os.path.join( | |
608 | + | out_dir, | |
609 | + | f"{stem_name}ttheta_{tt_key}_corrected_aligned.dat" | |
610 | + | ), | |
611 | + | "w" | |
612 | + | ) as f: | |
613 | + | f.write(f"{len(q_vals)}\n") | |
614 | + | f.write("\n") | |
615 | + | for i, q_val in enumerate(q_vals): | |
616 | + | f.write("{0:10.3F}{1:20.5F}\n".format(q_val, sofq_ttheta[i])) | |
617 | + | ||
618 | + | # We try to use the `argrelextrema` method in `scipy` to figure out | |
619 | + | # local valley points on the pattern and use those valley points for | |
620 | + | # fitting an exponential background. | |
621 | + | mask_tmp = q_vals >= bkg_lb | |
622 | + | sofq_ttheta_m = sofq_ttheta[mask_tmp] | |
623 | + | q_vals_m = q_vals[mask_tmp] | |
624 | + | ||
625 | + | # The `order` parameter here controls how 'local' the valley will be. | |
626 | + | # If set to a very small value, it will reproduce the overall pattern | |
627 | + | # itself. But setting the value too high may induce too few points. | |
628 | + | q_min = argrelextrema(sofq_ttheta_m, np.less, order=20) | |
629 | + | sofq_min = np.array([sofq_ttheta_m[item_i] for item_i in q_min[0]]) | |
630 | + | q_min = np.array([q_vals_m[item_i] for item_i in q_min[0]]) | |
631 | + | ||
632 | + | # For the background fitting purpose, we set all S(Q) values above | |
633 | + | # the specified threshold to the value just below (inclusive) the | |
634 | + | # boundary. This will get rid of the impact of those strong noise | |
635 | + | # in the high Q region. | |
636 | + | indices = np.where(q_min <= bkg_rb)[0] | |
637 | + | max_tmp = np.max(q_min[indices]) | |
638 | + | up_index = np.where(q_min == max_tmp)[0][0] | |
639 | + | for qm_i, qm_val in enumerate(q_min): | |
640 | + | if qm_val > bkg_rb: | |
641 | + | sofq_min[qm_i] = sofq_min[up_index] | |
642 | + | ||
643 | + | # Specifying the bounding parameter for `curve_fit` helps a lot with | |
644 | + | # fitting convergence. | |
645 | + | p_init = [0, 0.1, 0.1] | |
646 | + | bounds_l = [-np.inf, 0., 0.] | |
647 | + | bounds_u = [np.inf, 1., 1.] | |
648 | + | popt, pconv = curve_fit( | |
649 | + | bkg_expo, | |
650 | + | q_min, | |
651 | + | sofq_min, | |
652 | + | p0=p_init, | |
653 | + | bounds=(bounds_l, bounds_u) | |
654 | + | ) | |
655 | + | ||
656 | + | is_infinite = False | |
657 | + | for row in pconv: | |
658 | + | for element in row: | |
659 | + | if np.isinf(element): | |
660 | + | is_infinite = True | |
661 | + | break | |
662 | + | ||
663 | + | if is_infinite: | |
664 | + | print("[Warning] Infinite covariance in the curve fitting.") | |
665 | + | ||
666 | + | with open( | |
667 | + | os.path.join( | |
668 | + | out_dir, | |
669 | + | f"{stem_name}ttheta_{tt_key}_corrected_bkg_pts.dat" | |
670 | + | ), | |
671 | + | "w" | |
672 | + | ) as f: | |
673 | + | f.write(f"{len(q_min)}\n") | |
674 | + | f.write("\n") | |
675 | + | for i, q_val in enumerate(q_min): | |
676 | + | f.write( | |
677 | + | "{0:10.3F}{1:20.5F}\n".format( | |
678 | + | q_val, sofq_min[i] | |
679 | + | ) | |
680 | + | ) | |
681 | + | ||
682 | + | sofq_ttheta_bkg = bkg_expo(q_vals, popt[0], popt[1], popt[2]) | |
683 | + | sofq_ttheta_mb = sofq_ttheta - sofq_ttheta_bkg | |
684 | + | sofq_bkg_removed[tt_key] = sofq_ttheta_mb | |
685 | + | ||
686 | + | # We want to keep a record of the background that most closely resemble | |
687 | + | # 1 at high Q. | |
688 | + | bkg_hq_val = bkg_expo(q_vals[-1], popt[0], popt[1], popt[2]) | |
689 | + | bkg_off_tmp = abs(1. - bkg_hq_val) | |
690 | + | if bkg_off_tmp < bkg_off: | |
691 | + | bkg_off = bkg_off_tmp | |
692 | + | bkg_popt = popt | |
693 | + | ||
694 | + | with open( | |
695 | + | os.path.join( | |
696 | + | out_dir, | |
697 | + | f"{stem_name}ttheta_{tt_key}_corrected_bkg_rm_fittedbkg.dat" | |
698 | + | ), | |
699 | + | "w" | |
700 | + | ) as f: | |
701 | + | f.write(f"{len(q_vals)}\n") | |
702 | + | f.write("\n") | |
703 | + | for i, q_val in enumerate(q_vals): | |
704 | + | f.write( | |
705 | + | "{0:10.3F}{1:20.5F}{2:20.5F}\n".format( | |
706 | + | q_val, sofq_ttheta_mb[i], sofq_ttheta_bkg[i] | |
707 | + | ) | |
708 | + | ) | |
709 | + | ||
710 | + | # Integrate intensities inside Q chunks. | |
711 | + | ttheta_groups[tg_key]["QRange"][tt_key]["QChunkInt"] = list() | |
712 | + | for qv_i, q_val in enumerate(q_vals): | |
713 | + | v_t = sofq_ttheta_mb[qv_i] | |
714 | + | for qc_i, qc_val in enumerate(item["QChunkDef"]): | |
715 | + | if qc_i == 0: | |
716 | + | if q_val <= qc_val: | |
717 | + | if len(item["QRange"][tt_key]["QChunkInt"]) == 0: | |
718 | + | ttheta_groups[ | |
719 | + | tg_key | |
720 | + | ]["QRange"][tt_key]["QChunkInt"].append(v_t) | |
721 | + | else: | |
722 | + | ttheta_groups[ | |
723 | + | tg_key | |
724 | + | ]["QRange"][tt_key]["QChunkInt"][0] += v_t | |
725 | + | break | |
726 | + | else: | |
727 | + | if item["QChunkDef"][qc_i - 1] < q_val <= qc_val: | |
728 | + | if len(item["QRange"][tt_key]["QChunkInt"]) == qc_i: | |
729 | + | in_range1 = bkg_lb <= item["QChunkDef"][qc_i - 1] | |
730 | + | in_range2 = bkg_rb >= qc_val | |
731 | + | if in_range1 and in_range2: | |
732 | + | ttheta_groups[ | |
733 | + | tg_key | |
734 | + | ]["QRange"][tt_key]["QChunkInt"].append(v_t) | |
735 | + | else: | |
736 | + | ttheta_groups[ | |
737 | + | tg_key | |
738 | + | ]["QRange"][tt_key]["QChunkInt"].append(np.inf) | |
739 | + | else: | |
740 | + | ttheta_groups[ | |
741 | + | tg_key | |
742 | + | ]["QRange"][tt_key]["QChunkInt"][-1] += v_t | |
743 | + | break | |
744 | + | ||
745 | + | # Treat each Q chunk as a single 'point' and perform the isotropic correction | |
746 | + | # just as before. | |
747 | + | sph00 = sph_harm_real(0, 0, 0, 0) | |
748 | + | for tg_key, item in ttheta_groups.items(): | |
749 | + | params_all = list() | |
750 | + | qchunks_len = len(item["QChunkDef"]) | |
751 | + | for i in range(qchunks_len): | |
752 | + | sph_matrix = list() | |
753 | + | sofq_ttheta = list() | |
754 | + | lin_limit = item["LinLimit"][i] | |
755 | + | ||
756 | + | num_eqs = 0 | |
757 | + | for tt_key in item["QRange"].keys(): | |
758 | + | if tt_key in ttheta_k_valid: | |
759 | + | num_eqs += 1 | |
760 | + | ||
761 | + | tt_sph_l_max = 0 | |
762 | + | while (tt_sph_l_max + 1 + 1)**2 < num_eqs: | |
763 | + | tt_sph_l_max += 1 | |
764 | + | ||
765 | + | for tt_key in item["QRange"].keys(): | |
766 | + | if "Factor" not in item["QRange"][tt_key].keys(): | |
767 | + | ttheta_groups[tg_key]["QRange"][tt_key]["Factor"] = list() | |
768 | + | ||
769 | + | if tt_key not in ttheta_k_valid: | |
770 | + | continue | |
771 | + | ||
772 | + | tt_index = ttheta_k_valid.index(tt_key) | |
773 | + | ttheta_tmp = ttheta_valid[tt_index] | |
774 | + | v_t = item["QRange"][tt_key]["QChunkInt"][i] | |
775 | + | if v_t == np.inf: | |
776 | + | continue | |
777 | + | sofq_ttheta.append(v_t) | |
778 | + | sph_row = list() | |
779 | + | for l in range(tt_sph_l_max + 1): | |
780 | + | for m in range(-l, l + 1): | |
781 | + | sph_row.append( | |
782 | + | sph_harm_real( | |
783 | + | m, | |
784 | + | l, | |
785 | + | ttheta_tmp * np.pi / 180., | |
786 | + | 0. | |
787 | + | ) | |
788 | + | ) | |
789 | + | ||
790 | + | if "Infinity" not in lin_limit: | |
791 | + | sph_row.append(ttheta_tmp) | |
792 | + | ||
793 | + | sph_matrix.append(sph_row) | |
794 | + | ||
795 | + | sph_matrix = np.array(sph_matrix) | |
796 | + | sofq_ttheta = np.array(sofq_ttheta) | |
797 | + | ||
798 | + | if len(sph_matrix) > 0 or len(sofq_ttheta) > 0: | |
799 | + | if "Infinity" in lin_limit: | |
800 | + | num_terms = (tt_sph_l_max + 1)**2 | |
801 | + | else: | |
802 | + | num_terms = (tt_sph_l_max + 1)**2 + 1 | |
803 | + | ||
804 | + | params = np.array( | |
805 | + | [1 for _ in range(num_terms)] | |
806 | + | ) | |
807 | + | ||
808 | + | min_b = min(sofq_ttheta) / sph00 | |
809 | + | max_b = max(sofq_ttheta) / sph00 | |
810 | + | bounds = [(min_b, max_b)] | |
811 | + | if "Infinity" not in lin_limit: | |
812 | + | num_b_add = num_terms - 2 | |
813 | + | else: | |
814 | + | num_b_add = num_terms - 1 | |
815 | + | ||
816 | + | for _ in range(num_b_add): | |
817 | + | bounds.append( | |
818 | + | (-float('inf'), float('inf')) | |
819 | + | ) | |
820 | + | ||
821 | + | if "Infinity" not in lin_limit: | |
822 | + | bounds.append((lin_limit[0], lin_limit[1])) | |
823 | + | ||
824 | + | result = minimize( | |
825 | + | target_function, | |
826 | + | params, | |
827 | + | args=(sph_matrix, sofq_ttheta), | |
828 | + | method='SLSQP', | |
829 | + | bounds=bounds | |
830 | + | ) | |
831 | + | ||
832 | + | optimal_params = result.x | |
833 | + | ||
834 | + | y00 = sph_harm_real(0, 0, 0, 0) | |
835 | + | s00 = optimal_params[0] | |
836 | + | if "Infinity" not in lin_limit: | |
837 | + | ctt = optimal_params[-1] | |
838 | + | else: | |
839 | + | y00 = 0. | |
840 | + | s00 = 0. | |
841 | + | ||
842 | + | # Calculate the ratio of the original integrated intensity over | |
843 | + | # the isotropic intensity. | |
844 | + | for tt_key in item["QRange"].keys(): | |
845 | + | if tt_key not in ttheta_k_valid: | |
846 | + | continue | |
847 | + | ||
848 | + | if i == 0: | |
849 | + | factor_v = 1. | |
850 | + | else: | |
851 | + | tt_index = ttheta_k_valid.index(tt_key) | |
852 | + | ttheta_tmp = ttheta_valid[tt_index] | |
853 | + | if "Infinity" in lin_limit: | |
854 | + | top_val = y00 * s00 | |
855 | + | else: | |
856 | + | top_val = y00 * s00 + ctt * ttheta_tmp | |
857 | + | ||
858 | + | bottom_val = item["QRange"][tt_key]["QChunkInt"][i] | |
859 | + | factor_v = top_val / bottom_val | |
860 | + | ||
861 | + | # if tg_key == "Group-1": | |
862 | + | # if i == 2: | |
863 | + | # print("Debugging -> ") | |
864 | + | # print( | |
865 | + | # f"fit val: {top_val}, init val: {bottom_val}", | |
866 | + | # f"y00: {y00}, s00: {s00}", | |
867 | + | # f"tt: {ttheta_tmp}" | |
868 | + | # ) | |
869 | + | # print( | |
870 | + | # f"fit val: {top_val}, init val: {bottom_val}", | |
871 | + | # f"y00: {y00}, s00: {s00}, ctt: {ctt}", | |
872 | + | # f"tt: {ttheta_tmp}" | |
873 | + | # ) | |
874 | + | ||
875 | + | ttheta_groups[tg_key]["QRange"][tt_key]["Factor"].append( | |
876 | + | factor_v | |
877 | + | ) | |
878 | + | ||
879 | + | # Rescale the data by Q chunks according to the ratio obtained above. | |
880 | + | for tt_key in item["QRange"].keys(): | |
881 | + | if tt_key not in ttheta_k_valid: | |
882 | + | continue | |
883 | + | ||
884 | + | for i, q_val in enumerate(q_vals): | |
885 | + | for ii, qc_val in enumerate(item["QChunkDef"]): | |
886 | + | if ii > 0: | |
887 | + | # if q_vals[ii - 1] < q_val <= qc_val and q_val > 4.: | |
888 | + | if q_vals[ii - 1] < q_val <= qc_val: | |
889 | + | sofq_bkg_removed[tt_key][i] *= item[ | |
890 | + | "QRange" | |
891 | + | ][tt_key]["Factor"][ii] | |
892 | + | ||
893 | + | break | |
894 | + | ||
895 | + | # Add back in the exponential background. | |
896 | + | bkg_add = bkg_expo(q_vals, bkg_popt[0], bkg_popt[1], bkg_popt[2]) | |
897 | + | sofq_final = sofq_bkg_removed[tt_key] + bkg_add | |
898 | + | ||
899 | + | with open( | |
900 | + | os.path.join( | |
901 | + | out_dir, | |
902 | + | f"{stem_name}ttheta_{tt_key}_corrected_wo_bkg.dat" | |
903 | + | ), | |
904 | + | "w" | |
905 | + | ) as f: | |
906 | + | f.write(f"{len(q_vals)}\n") | |
907 | + | f.write("\n") | |
908 | + | for i, q_val in enumerate(q_vals): | |
909 | + | f.write( | |
910 | + | "{0:10.3F}{1:20.5F}\n".format( | |
911 | + | q_val, sofq_bkg_removed[tt_key][i] | |
912 | + | ) | |
913 | + | ) | |
914 | + | ||
915 | + | with open( | |
916 | + | os.path.join( | |
917 | + | out_dir, | |
918 | + | f"{stem_name}ttheta_{tt_key}_corrected_final.dat" | |
919 | + | ), | |
920 | + | "w" | |
921 | + | ) as f: | |
922 | + | f.write(f"{len(q_vals)}\n") | |
923 | + | f.write("\n") | |
924 | + | for i, q_val in enumerate(q_vals): | |
925 | + | f.write( | |
926 | + | "{0:10.3F}{1:20.5F}\n".format( | |
927 | + | q_val, sofq_final[i] | |
928 | + | ) | |
929 | + | ) | |
930 | + | ||
931 | + | with open(os.path.join(out_dir, f"{stem_name}_ttheta_1na_2a.json"), "w") as f: | |
932 | + | json.dump(ttheta_groups, f, indent=4) | |
933 | + | ||
934 | + | print("\n=========================================================") | |
935 | + | print("[Info] Done with the two-stage isotropic S(Q) correction.") | |
936 | + | print("[Info] Proceed to merge the corrected S(Q) data by bank.") | |
937 | + | print("=========================================================\n") | |
938 | + | ||
939 | + | with open("output_group.json", "r") as f: | |
940 | + | group_dict = json.load(f) | |
941 | + | ||
942 | + | bank_dict = dict() | |
943 | + | for key in ttheta_k_valid: | |
944 | + | for keykey in ttheta_groups.keys(): | |
945 | + | if key in ttheta_groups[keykey]["QRange"].keys(): | |
946 | + | key_group = keykey | |
947 | + | break | |
948 | + | ||
949 | + | file_t = os.path.join( | |
950 | + | out_dir, | |
951 | + | f"{stem_name}ttheta_{key}_corrected_final.dat" | |
952 | + | ) | |
953 | + | if os.path.exists(file_t): | |
954 | + | y_tmp = np.loadtxt(file_t, skiprows=2, dtype=float)[:, 1] | |
955 | + | for gkey, item in group_dict.items(): | |
956 | + | if item[0] <= float(key) < item[1]: | |
957 | + | bank = gkey | |
958 | + | break | |
959 | + | ||
960 | + | if bank not in bank_dict: | |
961 | + | bank_dict[bank] = { | |
962 | + | "y": y_tmp, | |
963 | + | "num_bands": 1, | |
964 | + | "q_counts": [0 for _ in range(len(q_vals))] | |
965 | + | } | |
966 | + | else: | |
967 | + | bank_dict[bank]["y"] += y_tmp | |
968 | + | bank_dict[bank]["num_bands"] += 1 | |
969 | + | ||
970 | + | q_chunk_tmp = ttheta_groups[key_group]["QChunkDef"] | |
971 | + | for i, q_val in enumerate(q_vals): | |
972 | + | for ii, qc_val in enumerate(q_chunk_tmp): | |
973 | + | if ii == 0: | |
974 | + | if q_val <= qc_val: | |
975 | + | q_chunk_id = ii | |
976 | + | break | |
977 | + | else: | |
978 | + | if q_chunk_tmp[ii - 1] < q_val <= qc_val: | |
979 | + | q_chunk_id = ii | |
980 | + | break | |
981 | + | ||
982 | + | if q_chunk_id == 0: | |
983 | + | factor = 1. | |
984 | + | else: | |
985 | + | factor = ttheta_groups[ | |
986 | + | key_group | |
987 | + | ]["QRange"][key]["Factor"][q_chunk_id] | |
988 | + | ||
989 | + | if factor > 0.: | |
990 | + | bank_dict[bank]["q_counts"][i] += 1 | |
991 | + | ||
992 | + | for key, item in bank_dict.items(): | |
993 | + | for i in range(len(q_vals)): | |
994 | + | if item["q_counts"][i] > 0: | |
995 | + | item["y"][i] /= item["q_counts"][i] | |
996 | + | else: | |
997 | + | item["y"][i] /= item["num_bands"] | |
998 | + | ||
999 | + | with open( | |
1000 | + | os.path.join(out_dir, f"{stem_name}{key}_merged_1na_2a_ave.dat"), | |
1001 | + | "w" | |
1002 | + | ) as f: | |
1003 | + | f.write(f"{len(q_vals)}\n") | |
1004 | + | f.write("\n") | |
1005 | + | for i, q_val in enumerate(q_vals): | |
1006 | + | f.write("{0:10.3F}{1:20.5F}\n".format(q_val, item["y"][i])) | |
1007 | + | ||
1008 | + | print("=========================================================") | |
1009 | + | print("[Info] Done with merging the corrected S(Q) by banks.") | |
1010 | + | print("=========================================================\n") |
Newer
Older