bin_shift_test.py
· 1.5 KiB · Python
Eredeti
import numpy as np
# +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
# First, using the method from Brian and Bob.
# +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
# Generate a dummy array with a constant binning on a logarithmic scale.
start_exponent = 0
stop_exponent = 3
num_bins = 10
x = np.logspace(start_exponent, stop_exponent, num=num_bins, base=10.0)
# Check the binning of the array on a logarithmic scale.
logged_x = np.log(x)
print("1 - Bin width on a logarithmic scale before shift, ", np.diff(logged_x))
# Shift the array by half of the 'bin'.
xdiff = np.append(np.diff(x), x[-1] - x[-2])
x -= xdiff / 2
# Check the binning of the array on a logarithmic scale, after the shift.
print("1 - Bin width on a logarithmic scale after shift, ", np.diff(x))
# +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
# Second, using the method from Yuanpeng
# +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
# Generate a dummy array with a constant binning on a logarithmic scale.
start_exponent = 0
stop_exponent = 3
num_bins = 10
x = np.logspace(start_exponent, stop_exponent, num=num_bins, base=10.0)
# Check the binning of the array on a logarithmic scale.
logged_x = np.log(x)
print("2 - Bin width on a logarithmic scale before shift, ", np.diff(logged_x))
# Shift the array by half of the 'bin'.
x = np.log(x)
bin_size = x[-1] - x[-2]
x = np.exp(x - bin_size / 2.)
# Check the binning of the array on a logarithmic scale, after the shift.
logged_x = np.log(x)
print("2 - Bin width on a logarithmic scale after shift, ", np.diff(logged_x))
1 | import numpy as np |
2 | |
3 | # +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
4 | # First, using the method from Brian and Bob. |
5 | # +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
6 | |
7 | # Generate a dummy array with a constant binning on a logarithmic scale. |
8 | start_exponent = 0 |
9 | stop_exponent = 3 |
10 | num_bins = 10 |
11 | x = np.logspace(start_exponent, stop_exponent, num=num_bins, base=10.0) |
12 | |
13 | # Check the binning of the array on a logarithmic scale. |
14 | logged_x = np.log(x) |
15 | print("1 - Bin width on a logarithmic scale before shift, ", np.diff(logged_x)) |
16 | |
17 | # Shift the array by half of the 'bin'. |
18 | xdiff = np.append(np.diff(x), x[-1] - x[-2]) |
19 | x -= xdiff / 2 |
20 | |
21 | # Check the binning of the array on a logarithmic scale, after the shift. |
22 | print("1 - Bin width on a logarithmic scale after shift, ", np.diff(x)) |
23 | |
24 | # +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
25 | # Second, using the method from Yuanpeng |
26 | # +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
27 | |
28 | # Generate a dummy array with a constant binning on a logarithmic scale. |
29 | start_exponent = 0 |
30 | stop_exponent = 3 |
31 | num_bins = 10 |
32 | x = np.logspace(start_exponent, stop_exponent, num=num_bins, base=10.0) |
33 | |
34 | # Check the binning of the array on a logarithmic scale. |
35 | logged_x = np.log(x) |
36 | print("2 - Bin width on a logarithmic scale before shift, ", np.diff(logged_x)) |
37 | |
38 | # Shift the array by half of the 'bin'. |
39 | x = np.log(x) |
40 | bin_size = x[-1] - x[-2] |
41 | x = np.exp(x - bin_size / 2.) |
42 | |
43 | # Check the binning of the array on a logarithmic scale, after the shift. |
44 | logged_x = np.log(x) |
45 | print("2 - Bin width on a logarithmic scale after shift, ", np.diff(logged_x)) |