yuanpeng / dify_docker_compose.yml
0 喜欢
0 派生
1 文件
最后活跃于
1 | services: |
2 | api: |
3 | image: langgenius/dify-api:0.14.0 |
4 | restart: always |
5 | environment: |
6 | MODE: api |
7 | LOG_LEVEL: INFO |
8 | SECRET_KEY: O/PzhwXRXX+8rv8CK144R8EPdFkOFODB/1QwI8iR4FApqah50KJD9gcU |
9 | CONSOLE_WEB_URL: '' |
10 | INIT_PASSWORD: '' |
yuanpeng / HaoL_stog_notes_12122024.txt
0 喜欢
0 派生
1 文件
最后活跃于
1 | 首先,stog是有两个不同的package,一个是在RMCProfile里边打包的,直接在RMCProfile的命令行里就可以执行的,命令是'stog_new',具体的使用说明在这里,https://rmcprofile.ornl.gov/data-pre-processing-for-rmcprofile/ |
2 | |
3 | 你在文档里提到是stog的Python版本,功能上跟上面的版本是一样的,可能还会更丰富些,包括data rebinning这些都可以在pystog里边做。 |
4 | |
5 | 针对data rescaling的需求,两个版本需要的参数基本是一对一对应的,这些参数的说明在上面提到的链接里都有,有可能名字是不一样的,比如你提到的rho,也叫做number density,这个在连接里也有提到。另外你在文档里提到的pystog的参考文档的使用方式是可以,但是其实它有一种更简便的办法,可以参照这里的文档,https://powder.ornl.gov/total_scattering/data_reduction/ts_pp.html,在这里你就能看到,它的输入和RMCProfile版本的stog是基本一对一对应的。参数说明上面的两个链接里都有介绍,应该是比较清楚的,有问题的话可以找我哈。值得一提的是你提到的<b_coh>^2,这个叫做Faber-Ziman系数,是由composition决定的,可以在这里说如composition进行计算,https://addie.ornl.gov/helpsheet,在结果的显示页里,关于它的定义也是有介绍的。 |
6 | |
7 | 在上面提到的第二个链接里,有一个Google Colab Notebook的链接,点进去直接运行所有的cells一步一步可以跟着做,主要就是利用pystog的一些基础功能做一些rebin,傅里叶变换,数据格式转换这些。'stog_new'和里边提到的'pystog_cli'(它的输入文件是一个json文件)就是把这些基础攒在一起直接take in reciprocal space data,做rescaling,傅里叶变换等等这些,in a single shot。 |
8 | |
9 | 我之前分享给你的数据都是经历过scaling的步骤的,就是都用‘pystog_cli’处理过,如果需要rescale的话,就需要用到原始的reciprocal space的数据,它不在你文档里show的那张图里边,你的数据的话可以去这里找,/SNS/NOM/IPTS-33670/shared/autoreduce/multi_banks_summed/SofQ_merged,里边所有以merged.sq结尾的数据都是原始的,没有经过任何rescaling的reciprocal space的数据。 |
yuanpeng / event_filter_snippet.py
0 喜欢
0 派生
1 文件
最后活跃于
1 | GenerateEventsFilter(InputWorkspace=ws, |
2 | OutputWorkspace='filter', |
3 | InformationWorkspace='info', |
4 | StartTime=start_time, |
5 | StopTime=stop_time, |
6 | TimeInterval=time_interval, |
7 | TimeTolerance=time_tolerance, |
8 | UnitOfTime=unit_of_time) |
9 | FilterEvents(InputWorkspace=ws, |
10 | SplitterWorkspace='filter', |
yuanpeng / rmc_lammps_build_notes.md
0 喜欢
0 派生
1 文件
最后活跃于
Build LAMMPS with RMCProfile
-
We first need to compile
LAMMPS
separately to obtain the library fileliblammps.so.0
, together with a soft link fileliblammps.so
pointing to the library file. Once we have the compiledliblammps.so.0
library file, creating the soft link is as simple as running,ln -s liblammps.so.0 liblammps.so
yuanpeng / Filter_by_time_stamp_ZYP.py
0 喜欢
0 派生
1 文件
最后活跃于
1 | # |
2 | # Filter_by_time_stamp_ZYP.py |
3 | # |
4 | # --------------------------------------------------------------------------- |
5 | # Script for filtering events based on time stamp |
6 | # --------------------------------------------------------------------------- |
7 | # |
8 | # ---------------------------- |
9 | # Yuanpeng Zhang @ Nov-10-2024 |
10 | # ---------------------------- |
yuanpeng / Filter_combined_ZYP.py
0 喜欢
0 派生
1 文件
最后活跃于
1 | # |
2 | # Filter_combined_ZYP.py |
3 | # |
4 | # --------------------------------------------------------------------------- |
5 | # This is a combined script for event filter by either sample log or time. |
6 | # The two ways of conducting event filter is not compatible with each other |
7 | # and users can choose which one to use by setting the `filter_by_time` |
8 | # variable in the 'Input section' below to either `True` (to enable filter by |
9 | # time) or `False` (to enable filter by sample log). |
10 | # --------------------------------------------------------------------------- |
yuanpeng / rmc2cif_win_linux
0 喜欢
0 派生
1 文件
最后活跃于
1 | data2config -noannotate -order [Ga P O] -supercell [1 1 1] -cif gapo4_xray.rmc6f |
yuanpeng / slurm_example.sh
0 喜欢
0 派生
1 文件
最后活跃于
1 | #!/bin/bash |
2 | # |
3 | #SBATCH --job-name=MY_JOB_NAME |
4 | #SBATCH --output=MY_OUTPUT_NAME.out |
5 | # |
6 | #SBATCH --ntasks=1 |
7 | #SBATCH --cpus-per-task=4 |
8 | #SBATCH --time=1000000:00 |
9 | #SBATCH --mem-per-cpu=256 |
yuanpeng / snippet.py
0 喜欢
0 派生
1 文件
最后活跃于
1 | if "-" in str(energy_theory[0]): |
2 | energy_theory = energy_theory[1:] |
3 | Percentage_theory = Percentage_theory[1:] |
更新
更早